upload diverse filer

This commit is contained in:
2025-12-10 13:13:05 +01:00
parent 41700ebeda
commit fe9e35efa5
65 changed files with 77423 additions and 2530 deletions

File diff suppressed because it is too large Load Diff

View File

@@ -668,7 +668,7 @@ Er et polynomium $Z^n=w$
$Z,w in CC, n in ZZ_(>=0)$
$
Z= root(n, |w|) dot e^(i ((a r g(w))/n) + p (2 pi)/n), p = {0,dots,n-1}
Z= root(n, |w|) dot e^(i ((a r g(w))/n + p (2 pi)/n)), p = {0,dots,n-1}
$
#example()[
@@ -699,7 +699,7 @@ Et n'te grads polynomie har n komplekse rødder regnet med multiplicitet.
Man kan omskrive alle polynomier som et produkt af førstegradspolynomier.\
Hvis $p(z)$ har rødder $lambda_1, dots, lambda_n$, kan det omskrives til:
$
P(z)=a_n(z-lambda_1) dot dots dot (z-lambda_n)
P(z)=a_n (z-lambda_1) dot dots dot (z-lambda_n)
$
eller med multiplicitet:
$
@@ -840,7 +840,7 @@ sum^(n-1)_(k=1)k=((n-1)(n-1+1))/2=((n-1)dot n)/2
$
$
sum^(n)_(k=1)k=underbrace(1+2+3+dots+(n-2)+(n-1)+, sum^(n-1)_(k=1)k) n
sum^(n)_(k=1)k=underbrace(1+2+3+dots+(n-2)+(n-1), sum^(n-1)_(k=1)k) + n
$
$
sum^(n)_(k=1)k&=sum^(n-1)_(k=1)k + n\
@@ -1022,7 +1022,7 @@ $u = a_1+b_1Z\ v=a_2+b_2Z$
Betragt
$
u+ alpha dot v &= (a_1+b_1Z)+alpha (a_2 + b_2 Z)
u+ alpha dot v &= (a_1+b_1Z)+alpha (a_2 + b_2 Z)\
&= a_1 + b_1Z + alpha a_2+ alpha b_2Z = underbrace((a_1 + alpha a_2), a in CC) + underbrace((b + alpha b_2), b in CC)Z
$
]
@@ -1164,7 +1164,7 @@ $f$ er injektiv hvis og kun hvis $ker(f)={0}$ (og $f$ er lineær)
Derfor, find nulrummet. $"rref"(amat(f, gamma, beta))=mat(1,0), x_1 = 0$ dvs.
$amat(f, gamma, beta)) underbrace(vec(0,t), = t vec(0,1))=0$ for *alle* $t in RR$
$amat(f, gamma, beta) underbrace(vec(0,t), = t vec(0,1))=0$ for *alle* $t in RR$
$f(vec(0,1))=0$. Tilbage til normale koordinater.

View File

@@ -0,0 +1,142 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"id": "8d87a703",
"metadata": {},
"outputs": [],
"source": [
"import sympy as sp\n"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "dffe7f14",
"metadata": {},
"outputs": [
{
"data": {
"text/latex": [
"$\\displaystyle \\left[\\begin{matrix}52 & -8 & -8\\\\-4 & 50 & 2\\\\-4 & 2 & 50\\end{matrix}\\right]$"
],
"text/plain": [
"Matrix([\n",
"[52, -8, -8],\n",
"[-4, 50, 2],\n",
"[-4, 2, 50]])"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"{60: 1, 48: 1, 44: 1}\n"
]
}
],
"source": [
"# Opgave 1\n",
"A = sp.Matrix([[52, -8, -8], [-4, 50, 2], [-4, 2, 50]])\n",
"display(A)\n",
"eigenvalsA = A.eigenvals()\n",
"print(eigenvalsA)\n"
]
},
{
"cell_type": "code",
"execution_count": 36,
"id": "debdde8b",
"metadata": {},
"outputs": [
{
"data": {
"text/latex": [
"$\\displaystyle \\left[\\begin{matrix}9 & -2 & 1\\\\-1 & 10 & -1\\\\1 & -2 & 9\\end{matrix}\\right]$"
],
"text/plain": [
"Matrix([\n",
"[ 9, -2, 1],\n",
"[-1, 10, -1],\n",
"[ 1, -2, 9]])"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"[(8, 2, [Matrix([\n",
"[2],\n",
"[1],\n",
"[0]]), Matrix([\n",
"[-1],\n",
"[ 0],\n",
"[ 1]])]), (12, 1, [Matrix([\n",
"[ 1],\n",
"[-1],\n",
"[ 1]])])]\n",
"hej\n",
"Matrix([[2], [1], [0]])\n",
"Matrix([[-1], [0], [1]])\n",
"Matrix([[1], [-1], [1]])\n",
"Matrix([[12], [20], [-20]])\n"
]
}
],
"source": [
"# Opgave 2\n",
"\n",
"B = sp.Matrix([[9, -2, 1], [-1, 10, -1], [1, -2, 9]])\n",
"display(B)\n",
"eigenvectsB = B.eigenvects()\n",
"\n",
"print(eigenvectsB)\n",
"print(\"hej\")\n",
"print(eigenvectsB[0][2][0])\n",
"print(eigenvectsB[0][2][1])\n",
"print(eigenvectsB[1][2][0])\n",
"\n",
"print(sp.Matrix([[9, -2, 1], [-1, 10, -1], [1,-2,9]]) * sp.Matrix([2, 2, -2]))"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "fa460b84",
"metadata": {},
"outputs": [],
"source": [
"# Opgave 3\n",
"\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.13.7"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -1,7 +1,7 @@
#import "@local/dtu-template:0.5.1":*
#show: dtu-math-assignment.with(
#show: dtu-note.with(
course: "01001",
course-name: "Mathematics 1a (Polytechnical Foundation)",
title: "Matrixalgebra og determinanter",
@@ -94,3 +94,49 @@ $
]
*Gange matricer sammen:*
Bygger videre før.
$
bold(A) in FF^(m times n), quad bold(B) in FF^(n times L)
$
Antal søjler i $bold(B)$ skal være lig med antal rækker i $bold(A)$.
$bold(B) = mat(bold(b_1),dots,bold(b_L))$
$
bold(A) dot bold(B) = mat(bold(A) dot bold(b_1), bold(A) dot bold(B_2), dots, bold(A) dot bold(b_L))
$
Bemærk $bold(A) dot bold(B) in FF^(m times L)$
#note-box()[
Bemærk: $bold(A) dot bold(B) eq.not bold(B) dot bold(A)$
]
= Lineære ligningssystem
$
cases(a_(11) x_1 + dots + a_(1 n) x_n = b_1, dots.v, a_(m 1) x_1 + dots + a_(m n) x_n = b_n)
$
Er det samme som:
$
mat(a_(11), dots, a_(1 n);dots.v;a_(m 1), dots, a_(m n)) dot vec(x_1, dots.v, x_n) = vec(b_1, dots.v, b_n)
$
#definition(title: "Identitetsmatrix")[
$
bold(I)_n = mat(1,0,dots,0;0,,,dots.v;dots.v,,,0;0,dots,0,1) in FF^(n times n)
$
Kaldes den $n times n$ identitetsmatrix
]
#definition(title: "7.3.1: Invers matrix")[
Givet $bold(A) in FF^(n times n)$ hvis der findes en matrix $bold(B) in FF^(n times n)$ således at $bold(A) dot bold(B) = bold(I)_n$ og $bold(B) dot bold(A) = bold(I)_n$, siges at $bold(A)$ er invers og $bold(B)$ kaldes $bold(A)$'s inverse matrix:
$
bold(B) = bold(A)^(-1)
$
Man finder den ved:
$
mat(bold(A),bold(I)_n; augment: #(-1)) arrow.long dots arrow.long mat(bold(I)_n, bold(A)^(-1);augment: #(-1))
$
]