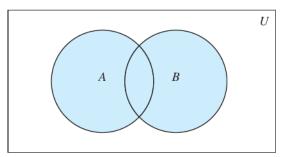
Union of 2 sets

Def: Let A and B be sets. The Union of A and B, denoted by $A \cup B$, is the set that contains every element in either A or B or both.

$$A \cup B = \{x | x \in A \lor x \in B\}$$

The order of the operation doesn't matter



 $A \cup B$ is shaded.

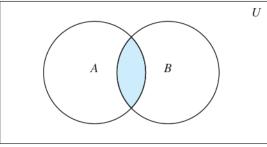
FIGURE 1 Venn diagram of the union of A and B.

Intersections

Def: Let A and B be sets. The intersection of A and B, denoted by $A \cap B$, is the set containing those elements, that are in both A and B.

$$A\cap B=\{x|x\in A\wedge x\in B\}$$

The order of the operation doesn't matter



 $A \cap B$ is shaded.

FIGURE 2 Venn diagram of the intersection of A and B.

Disjoint

Def. A and B are disjoint if $A \cap B = \emptyset$, aka they don't have any elements in common.

Size of elements in two sets

If A and B are finite sets, then:

$$|A \cup B| = |A| + |B| - |A \cap B|$$

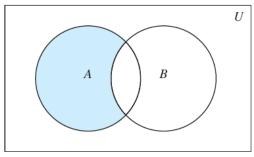
To get size of the elements in the sets, you need to add their size together, and then subtract all the elements they have in common.

Difference

Def: Let A and B be sets. The Difference of A and B, denoted A - B, is the set containing those elements of A that are not in B.

$$A-B=\{x|x\in A\land x\notin B\}$$

Sometimes also denoted $A \setminus B$



A - B is shaded.

FIGURE 3 Venn diagram for the difference of A and B.

If $A - B = \emptyset$. Either A = B or $A \subset B$ (A is a subset of B).

Complement

Everything that is not in the set. But you need a universal set (in the pictures, the rectangle is the universal set).

Def: Let U be the universal set. The complement of the set A, denoted by \bar{A} , is the containing all the elements of U that are not in A. $\bar{A}=U-A$

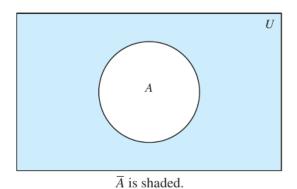


FIGURE 4 Venn diagram for the complement of the set A.

Example.

$$\begin{split} U = \mathbb{N}, \quad A &= \{1, 3, 5, 7, \ldots\} \\ &\bar{A} = \{0, 2, 4, 6, \ldots\} \\ &U = \mathbb{Z}, \quad \bar{A} = \{\ldots, -2, -1, 0, 2, 4, \ldots\} \end{split}$$

Set identities

TABLE 1 Set Identities.	
Identity	Name
$A \cap U = A$ $A \cup \emptyset = A$	Identity laws
$A \cup U = U$ $A \cap \emptyset = \emptyset$	Domination laws
$A \cup A = A$ $A \cap A = A$	Idempotent laws
$\overline{(\overline{A})} = A$	Complementation law
$A \cup B = B \cup A$ $A \cap B = B \cap A$	Commutative laws
$A \cup (B \cup C) = (A \cup B) \cup C$ $A \cap (B \cap C) = (A \cap B) \cap C$	Associative laws
$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$	Distributive laws
$\overline{\overline{A \cap B}} = \overline{\overline{A}} \cup \overline{\overline{B}}$ $\overline{A \cup B} = \overline{A} \cap \overline{B}$	De Morgan's laws
$A \cup (A \cap B) = A$ $A \cap (A \cup B) = A$	Absorption laws
$A \cup \overline{A} = U$ $A \cap \overline{A} = \emptyset$	Complement laws

Prove:
$$\overline{A \cup B} = \overline{A} \cup \overline{B}$$

$$x \in \overline{A \cup B} \Leftrightarrow$$

$$x \notin A \cup B \Leftrightarrow$$

$$x \notin A \land x \notin B \Leftrightarrow$$

$$x \in \overline{A} \land x \in \overline{B} \Leftrightarrow$$

$$x \in \overline{A} \cup \overline{B}$$

If x is in the complement of the union of A and B, then it must not be in the union of A and B. In other words, it is not in either A or B. This can be written as x being in the complement of A and the complement of B. This can be then be written as x is in the union of the complement of A and the complement of B.

Prove:
$$\overline{A \cup (B \cap C)} = \left(\bar{C} \cup \bar{B}\right) \cap \bar{A}$$

$$\overline{A \cup (B \cap C)} \Leftrightarrow$$

$$\bar{A} \cap \left(\overline{B \cup C}\right) \Leftrightarrow$$

$$\bar{A} \cap \left(\bar{B} \cup \bar{C}\right)$$

Unions and intersections of an arbitrary number of sets

$$\cup_{i=1}^{\backsim} A_i = \{x | \exists \ i \in \{1,...,b\} \text{ such that } x \in A_i\}$$

$$\bigcap_{i=1}^{\sim} A_i = \{x | \forall i \in \{1, ..., n\} \text{ such that } x \in A_i\}$$

$$\cup_{i=1}^{\infty} A_i = \{x | \exists \ i \in \mathbb{Z}^+ \text{ such that } x \in A_i\}$$

$$\cap_{i=1}^{\infty} A_i = \{x | \forall \ i \in \mathbb{Z}^+ \text{ such that } x \in A_i\}$$

Example:
$$A_i = \{1, 2, 3, ..., i\}, A_1 = \{1\}, A_2 = \{1, 2\}$$

$$\bigcup_{i=1}^{\infty} A_i = \mathbb{Z}^+, \cap_{i=1}^{\infty} A_i = \{1\}$$

Functions

Def: Let A and B be nonempty sets. A function f from A to B is an assignment of exactly one element of B to each element of A. We write f(a) = b if b is the element of B that f assigns to a.

We write $f: A \to B$ to denote that f is a function from A to B.

$$(a, f(a)) \in A \times B$$

Def: Let
$$f: A \to B$$

Domain of f is A

Codomain of f is B

If f(a) = b, then b is the **image** of a under f, and a is a **preimage** of b. For every a it matches a single b.

Range/Image of *f* the set of all images

Example:
$$A = \{a, b, c, d\}, B = \{1, 2, 3, 4\}, f : A \to B$$

$$f(a) = 1$$
, $f(b) = 2$, $f(c) = 3$, $f(d) = 4$

Real-valued function means that codomain $= \mathbb{R}$ (real number)

Integer-valued function means that codomain = \mathbb{Z} (integers)

Sum

Def: let f_1 and f_2 be real valued functions from A, then $f_1 + f_2$ and $f_1 f_2$ are functions from A to \mathbb{R} defined as:

$$(f_1 + f_2)(x) = f_1(x) + f_2(x)$$

$$f_1 f_2(x) = f_1(x) f_2(x)$$

Example: $f_1, f_2: \mathbb{R} \to \mathbb{R} \ f_1(x) = x^2, \ f_2(x) = x - x^2$

$$(f_1 + f_2)(x) = x$$

$$f_1 f_2(x) = x^3 - x^4$$

Def: Let $f: A \to B$. If $S \subseteq A$, then the image of S under f, denoted f(S) is the set $\{b \in B | \exists a \in S \text{ such that } f(a) = b\}$

Example:
$$f: \mathbb{R} \to \mathbb{R}$$
 $f(x) = x^2$
$$S = \{-1, 0, 1\}$$

$$f(S) = \{0, 1\}$$

Injectivity and Surjectivity

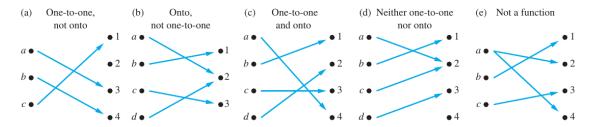


FIGURE 5 Examples of different types of correspondences.

Injectivity

Def: A function $f:A\to B$ is one-to-one/injective/an injection if $f(x)=f(y)\Rightarrow x=y, \forall x,y\in A$. Two elements in the domain, cannot match to the same element in the codomain.

$$x \neq y \Rightarrow f(x) \Rightarrow f(y)$$
.

Example

$$f: \mathbb{Z} \to \mathbb{Z} \ f(x) = x^2$$

This is not injective as for example both -1 and 1 give the same answer.

 $f: \mathbb{N} \to \mathbb{Z}$ $f(x) = x^2$ would be injective as you now only have positive x.

Def: Let $f: A \to B$ such that $A, B \subseteq \mathbb{R}$. Then f is increasing if $x \leq y \Rightarrow f(x) \leq f(y) \ \forall x, y \in A$.

It would be strictly increasing if $x < y \Rightarrow f(x) < f(y) \ \forall x, y \in A$. And this would be the same for decreasing, only the opposite of course.

A strictly increasing function implies that the function is injective

Surjectivity

Def: A function $f: A \to B$ is surjective/onto/a surjection if $\forall b \in B, \exists a \in A$ such that f(a) = b. For every element in the codomain, there exists an element in the domain that matches to it.

Example:
$$f: \mathbb{Z} \to \mathbb{Z}$$
 $f(x) = x - 1$

Let
$$k \in \mathbb{Z}$$
, then $k+1 \in \mathbb{Z}$ and $f(k+1) = k+1-1 = k$.

 $f: \mathbb{N} \to \mathbb{N}$ f(x) = 2x would not be surjective because the uneven numbers in the codomain would not have an element in the domain matched to them. $f: \mathbb{Z} \to \mathbb{Z}$ f(x) = 2x would be surjective because for every real number, half that number would still be a real number, so every element in the codomain would have an element in the domain that matches it.

Bijection

Def: A function is a bijection/one-to-one correspondence if it is both injective and surjective

Suppose $f: A \to B$

To show that f is *injective*: show if f(x) = f(y), then x = y (for arbitrary $x, y \in A$)

To show that it's not *injective*: Find a particular $x, y \in A$ such that $x \neq y$ and f(x) = f(y)

To show that f is *surjective*: Consider arbitrary $b \in B$, and show $\exists a \in A$ such that f(a) = b

To show that it's not *surjective*: Find a particular $b \in B$ such that $\nexists a \in A$ with f(a) = b

Inverse

Def: Let $f:A\to B$ be a bijection. The inverse function of f, denoted f^{-1} , is the function from B to A that assigns to $b\in B$ the unique element $a\in A$ such that f(a)=b. Note: $f^{-1}\neq \frac{1}{f}$.

Composition

Let
$$f: A \to B, \ g: B \to C$$

$$g \circ f : A \to C$$
$$f \circ g(a) = g(f(a))$$

Floor function

Largest integer that is less than or equal to x

Ceiling function

Smallest integer that is greater than or equal to x