Introduction

Let $a, b \in \mathbb{Z}$. We say that a divides b, written $a \mid b$, if there exists $c \in \mathbb{Z}$ such that b = ac.

Definition 1. A positive integer p > 1 is called **prime** if its only positive divisors are 1 and p itself. Hello

Definition 2. For integers a and b, not both zero, the **greatest common divisor** gcd(a, b) is the largest positive integer that divides both a and b.

The Euclidean Algorithm

The Euclidean algorithm is an efficient method for computing the greatest common divisor of two integers.

Theorem 3 (Division Algorithm). Let $a, b \in \mathbb{Z}$ with b > 0. Then there exist unique integers q and r such that

$$a = bq + r \quad \text{with} \quad 0 \le r < b.$$

Here q is called the **quotient** and r is called the **remainder**.

Theorem 4. If a = bq + r, then gcd(a, b) = gcd(b, r).

Proof. Let $d = \gcd(a, b)$. Then $d \mid a$ and $d \mid b$. Since r = a - bq, we have $d \mid r$. Thus d is a common divisor of b and r, so $d \leq \gcd(b, r)$.

Conversely, let $d' = \gcd(b, r)$. Then $d' \mid b$ and $d' \mid r$. Since a = bq + r, we have $d' \mid a$. Thus d' is a common divisor of a and b, so $d' \leq \gcd(a, b) = d$.

Therefore $d = \gcd(b, r)$.

The Algorithm

To compute gcd(a, b) where $a \ge b > 0$:

1. Apply the division algorithm repeatedly:

$$\begin{split} a &= bq_1 + r_1, \quad 0 \leq r_1 < b \\ b &= r_1q_2 + r_2, \quad 0 \leq r_2 < r_1 \\ r_1 &= r_2q_3 + r_3, \quad 0 \leq r_3 < r_2 \\ &\vdots \\ r_{n-2} &= r_{n-1}q_n + r_n, \quad 0 \leq r_n < r_{n-1} \\ r_{n-1} &= r_nq_{n+1} + 0 \end{split}$$

2. The last non-zero remainder r_n is gcd(a, b).

Theorem 5 (Bézout's Identity). Let $a, b \in \mathbb{Z}$, not both zero, and let $d = \gcd(a, b)$. Then there exist integers x and y such that

$$ax + by = d$$
.

Proof. Consider the set $S = \{ax + by : x, y \in \mathbb{Z} \text{ and } ax + by > 0\}$. This set is non-empty (contains |a| or |b|) and bounded below by 1, so by the well-ordering principle it has a smallest element, say $d' = ax_0 + by_0$.

We claim that $d' = \gcd(a, b)$. First we show that $d' \mid a$. By the division algorithm, write a = d'q + r with $0 \le r < d'$. Then

$$r=a-d'q=a-(ax_0+by_0)q=a(1-x_0q)+b(-y_0q).$$

If r > 0, then $r \in S$ and r < d', contradicting the minimality of d'. Thus r = 0 and $d' \mid a$. Similarly, $d' \mid b$.

So d' is a common divisor of a and b, hence $d' \leq d = \gcd(a,b)$.

Conversely, since $d\mid a$ and $d\mid b$, we have $d\mid (ax_0+by_0)=d'.$ Thus $d\leq d'.$

Therefore d=d', completing the proof.