

Discrete Mathematics - Exam Cheat Sheet

01017Discrete Mathematics

Date: 10 December 2025 **Semester:** 2025 Fall

Rasmus Rosendahl-kaa (s255609)

Key Formulas & Quick Reference

Number Theory

Formula	Description
$ab = \gcd(a, b) \cdot \operatorname{lcm}(a, b)$	Fundamental GCD-LCM relation
$\gcd(a,b)=sa+tb$ for some $s,t\in\mathbb{Z}$	Bézout's identity
$a \equiv b \pmod{m} \Longleftrightarrow m \mid (a - b)$	Congruence definition
$\boxed{a^{-1} \operatorname{mod} m \text{ exists} \Longleftrightarrow \gcd(a,m) = 1}$	Multiplicative inverse exists
$d = \gcd(a, b) \Rightarrow d^2 \mid ab$	GCD constraint on product
$a^{p-1} \equiv 1 \pmod{p} \text{ if } p \nmid a$	Fermat's Little Theorem
$a^p \equiv a \pmod{p}$	Fermat's Little Theorem (alt)

Combinatorics

Formula	Description
$\binom{n}{k} = \frac{n!}{k!(n-k)!}$	Binomial coefficient
$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$	Binomial theorem
$D_n = n! \sum_{k=0}^n \frac{(-1)^k}{k!} pprox \frac{n!}{e}$	Derangements (no fixed points)
$k \cdot \binom{n}{k} = n \cdot \binom{n-1}{k-1}$	Absorption identity
$\sum_{k=0}^{n} \binom{n}{k} = 2^n$	Sum of binomial coefficients
$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$	Pascal's identity
	Vandermonde's identity
Circular permutations: $(n-1)!$	Arrangements around a circle

Graph Theory

Formula	Description
Q_n : vertices = 2^n , edges = $n \cdot 2^{n-1}$	n-cube (hypercube)
$K_n \text{: edges} = \binom{n}{2} = \frac{n(n-1)}{2}$	Complete graph
$\sum_{v \in V} \deg(v) = 2 E $	Handshaking lemma
Euler circuit exists \iff all degrees even	Euler's theorem
Euler path exists ⇔ exactly 0 or 2 odd vertices	Euler path condition
Tree on n vertices has $n-1$ edges	Tree edge count

Set Theory & Inclusion-Exclusion

Formula	Description
$ A \cup B = A + B - A \cap B $	Inclusion-exclusion (2 sets)
$\begin{array}{ c c } A \cup B \cup C = \sum A_i - \sum A_i \cap A_j + \\ A \cap B \cap C \end{array}$	Inclusion-exclusion (3 sets)
$\overline{A \cap B} = \overline{A} \cup \overline{B}$	De Morgan's law
$\overline{A \cup B} = \overline{A} \cap \overline{B}$	De Morgan's law
Subsets of n -element set: 2^n	Power set cardinality
Even-sized subsets: 2^{n-1}	Half of all subsets

Relations

Property	Definition
Reflexive	$\forall x: (x,x) \in R$
Symmetric	$\forall x,y:(x,y)\in R\Rightarrow (y,x)\in R$
Antisymmetric	$\forall x,y: [(x,y) \in R \land (y,x) \in R] \Rightarrow x = y$
Transitive	$\forall x,y,z: [(x,y) \in R \land (y,z) \in R] \Rightarrow (x,z) \in R$
Equivalence relation	Reflexive + Symmetric + Transitive
Partial order	Reflexive + Antisymmetric + Transitive

Examples + Solutions

Number Theory

Divisibility

Example (Divisibility with $ab \mid cd$)

If a, b, c, d are positive integers such that $ab \mid cd$, which must be true?

Solution:

Key insight: $ab \mid cd$ does NOT imply $a \mid c$ or $a \mid d$ individually.

True statement: "If p is a prime that divides a, then p|c or p|d"

Proof: If p|a and $ab \mid cd$, then $p \mid cd$. Since p is prime, p|c or p|d.

Counterexample: Let a = 6, b = 1, c = 2, d = 3. Then $ab = 6 \mid 6 = cd$.

- But gcd(a, b) = 6 does not divide gcd(c, d) = 1
- And $6 \nmid c$ and $6 \nmid d$

Example (GCD as linear combination)

Let a, b be positive integers. Which can NOT necessarily be written as as + bt for $s, t \in \mathbb{Z}$?

Solution:

Bézout's identity: gcd(a, b) = as + bt for some $s, t \in \mathbb{Z}$.

Any **multiple** of gcd(a, b) can be written as as + bt.

Answer: $\frac{\mathrm{lcm}(a,b)}{\gcd(a,b)} = a \frac{b}{\gcd(a,b)^2}$ is NOT necessarily a multiple of $\gcd(a,b)$.

GCD Constraints

Example (Possible GCD values given product)

Let a,b be positive integers with $ab = 5292 = 2^2 \cdot 3^3 \cdot 7^2$. Which CANNOT be gcd(a,b)? Options: 1, 3, 36, 42

Solution:

Key fact: If gcd(a, b) = d, then $d^2 \mid ab$.

Check each:

- d = 1: $1^2 = 1 \mid 5292$ (valid)
- d = 3: $3^2 = 9 \mid 5292$ (valid, since $3^3 \mid 5292$)
- $d=36=2^2\cdot 3^2$: Need $36^2=2^4\cdot 3^4\mid 2^2\cdot 3^3\cdot 7^2$. But $2^4\nmid 2^2!$
- $d = 42 = 2 \cdot 3 \cdot 7$: $42^2 = 2^2 \cdot 3^2 \cdot 7^2 \mid 2^2 \cdot 3^3 \cdot 7^2$ (valid)

Answer: 36 cannot be the GCD.

Modular Arithmetic

Example (Congruence cancellation)

If $ac \equiv bc \pmod{m}$, when can we conclude $a \equiv b \pmod{m}$?

Solution:

 $ac \equiv bc \pmod{m}$ means $m \mid c(a-b)$.

Cancellation Law: If gcd(c, m) = 1, then $a \equiv b \pmod{m}$.

Counterexample when $\gcd(c,m) \neq 1$: $2 \cdot 3 \equiv 2 \cdot 6 \pmod{6}$ (both $\equiv 0$), but $3 \not\equiv 6 \pmod{6}$.

Example (Finding multiplicative inverses mod 9)

Find the multiplicative inverse of $n \mod 9$ for n = 2, 6, 7.

Solution:

Inverse exists iff gcd(n, 9) = 1.

For n = 6: $gcd(6, 9) = 3 \neq 1 \rightarrow$

Does not exist

For n = 2: gcd(2, 9) = 1. Find x with $2x \equiv 1 \pmod{9}$:

• $2 \cdot 5 = 10 \equiv 1 \pmod{9} \rightarrow$

5

For n = 7: gcd(7, 9) = 1. Find x with $7x \equiv 1 \pmod{9}$:

• $7 \cdot 4 = 28 \equiv 1 \pmod{9} \rightarrow$

4

Chinese Remainder Theorem

Example (System of congruences)

Solve: $x \equiv 1 \pmod{2}$, $x \equiv 4 \pmod{5}$, $x \equiv 3 \pmod{7}$

Solution:

Moduli 2, 5, 7 are pairwise coprime, so unique solution mod $2 \cdot 5 \cdot 7 = 70$.

Method: Back substitution

Step 1: From $x \equiv 1 \pmod{2}$: $x = 1 + 2t_1$

Step 2: Substitute into $x \equiv 4 \pmod 5$: $1 + 2t_1 \equiv 4 \pmod 5 \Longrightarrow 2t_1 \equiv 3 \pmod 5$

Inverse of 2 mod 5: $2 \cdot 3 = 6 \equiv 1$, so $t_1 \equiv 3 \cdot 3 = 9 \equiv 4 \pmod{5}$

Thus $t_1 = 4 + 5t_2$, giving $x = 1 + 2(4 + 5t_2) = 9 + 10t_2$

Step 3: Substitute into $x \equiv 3 \pmod{7}$: $9 + 10t_2 \equiv 3 \pmod{7} \Longrightarrow 2 + 3t_2 \equiv 3 \pmod{7} \Longrightarrow 3t_2 \equiv 1 \pmod{7}$

Inverse of 3 mod 7: $3 \cdot 5 = 15 \equiv 1$, so $t_2 \equiv 5 \pmod{7}$

Thus $t_2 = 5 + 7t_3$, giving x = 9 + 10(5) = 59

Answer: $x \equiv 59 \pmod{70}$

Verify: $59 = 29 \cdot 2 + 1$, $59 = 11 \cdot 5 + 4$, $59 = 8 \cdot 7 + 3$

Functions: Injective/Surjective Analysis

Example (Function classification)

Classify each function:

- 1. $f: \mathbb{Z}^+ \to \mathbb{N}$ given by $f(x) = \lfloor \log_2(x) \rfloor$
- 2. $f: \mathbb{N} \to \mathbb{Z}$ given by $f(x) = \begin{cases} \lceil x/2 \rceil \text{ if } x \text{ even} \\ -\lceil x/2 \rceil \text{ if } x \text{ odd} \end{cases}$
- 3. $f: \mathbb{N} \to \mathbb{N}$ given by $f(x) = x^3 + 1$

Solution:

- 1. $f(x) = \lfloor \log_2(x) \rfloor, \mathbb{Z}^+ \to \mathbb{N}$:
- Surjective? Every $n \in \mathbb{N}$ is hit by $x = 2^n$. Yes
- Injective? f(2) = f(3) = 1. No
- · Surjective but not injective
- **2.** Alternating function $\mathbb{N} \to \mathbb{Z}$:
- f(0) = 0, f(1) = -1, f(2) = 1, f(3) = -2, f(4) = 2, ...
- Surjective? Hits all of \mathbb{Z} . Yes
- Injective? Each output appears exactly once. Yes
- Bijection
- 3. $f(x) = x^3 + 1$, $\mathbb{N} \to \mathbb{N}$:
- Injective? x^3 is strictly increasing. Yes
- Surjective? $f(0) = 1, f(1) = 2, f(2) = 9, \dots$ skips 3,4,5,6,7,8. No
- Injective but not surjective

Using the Function Checker

Example (Checking function properties with check-function)

Verify properties of $f(x) = \lfloor \log_2(x) \rfloor$ on domain $\{1, 2, ..., 8\}$ onto $\{0, 1, 2, 3\}$:

Solution:

Function f: Injective: No, Surjective: Yes, Bijective: No

Injectivity fails: f(2) = f(3) = 1

Analysis:

- Mapping: f(1) = 0, f(2) = 1, f(3) = 1, f(4) = 2, f(5) = 2, f(6) = 2, f(7) = 2, f(8) = 3
- Not injective because f(2) = f(3) = 1 (and others)
- Surjective because all outputs $\{0, 1, 2, 3\}$ are hit

More examples:

Function	Injective	Surjective	Bijective
	Yes	Yes	Yes
$f(x) = x \operatorname{mod} 5 \qquad \qquad \text{on} \\ \{0, 1, 2, 3, 4\}$	Yes	Yes	Yes
$f(x) = x \\ \text{on } \{-2, -1, 0, 1, 2\} \\ \text{onto } \{0, 1, 2\}$	No	Yes	No

Graph Theory

Hypercube and Complete Graphs

Example (Edges in Q_n and K_n)

Hypercube Q_n :

- Vertices: 2^n (all n-bit binary strings)
- Each vertex has degree n (can flip any of n bits)
- By handshaking: $2|E| = 2^n \cdot n$, so $|E| = n \cdot 2^{n-1}$

Complete graph K_n :

• Every pair of vertices connected: $|E|=\binom{n}{2}=\frac{n(n-1)}{2}$

For
$$K_{2n}$$
: edges $= {2n \choose 2} = (2n) \frac{2n-1}{2} = n(2n-1)$

Alternative form: $2\binom{n}{2}+n^2=n(n-1)+n^2=n(2n-1)$

Degree Sequences

Example (Valid degree sequence?)

Does a simple graph with degrees 2, 2, 3, 3, 3, 3, 3 exist?

Solution:

Sum of degrees = 2 + 2 + 3 + 3 + 3 + 3 + 3 = 19.

By handshaking lemma: $\sum \deg(v) = 2|E|$ must be even.

Since 19 is odd,

such a graph does not exist.

Euler Circuits

Example (Königsberg Bridge Problem)

A graph has an Euler circuit iff:

- 1. The graph is connected
- 2. Every vertex has even degree

A graph has an Euler path iff:

- 1. The graph is connected
- 2. Exactly 0 or 2 vertices have odd degree

In Königsberg: degrees are 5, 3, 3, 3 (all odd) \rightarrow No Euler path or circuit.

Combinatorics

Binomial Theorem

Example (Coefficient in $(2x^2 - 3y^3)^8$)

Find coefficients of $x^8y^{\{12\}}$ and x^6y^9 .

Solution:

General term: $\binom{8}{k}\big(2x^2\big)^k\big(-3y^3\big)^{8-k} = \binom{8}{k}2^k(-3)^{8-k}x^{2k}y^{3(8-k)}$

For $x^8y^{\{12\}}$: Need 2k = 8 and 3(8 - k) = 12.

- k=4 (valid)
- Coefficient: $\binom{8}{4} \cdot 2^4 \cdot (-3)^4 = 70 \cdot 16 \cdot 81 = 90720$

For x^6y^9 : Need 2k = 6 and 3(8 - k) = 9.

- k = 3 but 8 k = 5, and $3 \cdot 5 = 15 \neq 9$ (invalid)
- Coefficient is 0

Inclusion-Exclusion

Example (Union of four sets)

Each of 4 sets has 200 elements, each pair shares 50, each triple shares 25, all four share 5. Find $|A \cup B \cup C \cup D|$.

Solution:

$$\begin{split} |A \cup B \cup C \cup D| &= {4 \choose 1} \cdot 200 - {4 \choose 2} \cdot 50 + {4 \choose 3} \cdot 25 - {4 \choose 4} \cdot 5 \\ &= 4(200) - 6(50) + 4(25) - 1(5) = 800 - 300 + 100 - 5 = 595 \end{split}$$

Derangements

Example (Derangement formula and values)

$$D_n = n! \sum_{k=0}^n \frac{(-1)^k}{k!} = n! \big(1 - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} + \ldots \big)$$

First few values:

 $\bullet \ D_0=1,\, D_1=0,\, D_2=1,\, D_3=2$

• $D_4 = 9$, $D_5 = 44$, $D_6 = 265$, $D_7 = 1854$

Recurrence: $D_n = (n-1)(D_{n-1} + D_{n-2})$

Approximation: $D_n \approx \frac{n!}{e}$ (rounds to nearest integer for $n \geq 1$)

Circular Permutations

Example (20 people around a round table)

Count seatings where two arrangements are identical if:

- 1. Each person has same two neighbors (ignoring direction)
- 2. Each person has same left AND right neighbor

Solution:

Case 2 (same left AND right neighbor):

- Standard circular permutation: (n-1)! = 19!
- Fix one person's position, arrange remaining 19 people.

Case 1 (same two neighbors, ignoring direction):

- Each arrangement counted twice (clockwise vs counterclockwise)
- Answer: $\frac{19!}{2}$

Relations

Example (Classify relations on $\{1,2,3,4,5,6\}$)

$$R_1 = \{(1,2), (2,3), (1,3), (4,5), (5,6), (4,6)\}$$

Solution

- Reflexive? Missing (1,1), (2,2), ... (no)
- Symmetric? $(1,2) \in R$ but $(2,1) \notin R$ (no)
- Antisymmetric? No pair (x, y), (y, x) with $x \neq y$ both present (yes)
- Transitive? $(1,2),(2,3)\in R$ and $(1,3)\in R$; $(4,5),(5,6)\in R$ and $(4,6)\in R$ (yes)
- Transitive and antisymmetric only

Example (Equivalence classes mod 4)

The equivalence relation of congruence modulo 4 on \mathbb{Z} :

$$[0]_{\text{mod }4} = \{..., -8, -4, 0, 4, 8, ...\}$$

$$[1]_{\text{mod }4} = \{..., -7, -3, 1, 5, 9, ...\}$$

$$[2]_{\text{mod }4} = \{..., -6, -2, 2, 6, 10, ...\}$$

$$[3]_{\text{mod }4} = \{..., -5, -1, 3, 7, 11, ...\}$$

$$(1)$$

These four equivalence classes partition the integers.

Partitions of Sets

Example (Partitions of $\mathbb{Z} \times \mathbb{Z}$)

Which are partitions?

- (a) $\{(x, y) : x \text{ or } y \text{ odd}\}\$ and $\{(x, y) : x \text{ and } y \text{ even}\}\$
- (b) $\{(x,y) : x \text{ and } y \text{ odd}\}\$ and $\{(x,y) : x \text{ and } y \text{ even}\}\$

Solution:

Every (x, y) falls into one of 4 categories: EE, OO, EO, OE

(a): "x or y odd" = OO \cup EO \cup OE. "x and y even" = EE.

- · Disjoint? Yes. Cover everything? Yes.
- YES, this is a partition

(b): "x and y odd" = OO. "x and y even" = EE.

- Missing EO and OE!
- NO, doesn't cover everything

Proof by Induction

Example (Strong induction: Pie-throwing problem)

Prove: If 2n + 1 people throw pies at their nearest neighbor, at least one survives.

Solution:

Base case (n = 1): 3 people. Closest pair (A, B) throw at each other. Third person C's nearest is either A or B. So A and B each receive one pie, C receives 0. C survives.

Inductive step: Assume true for 2k+1 people. Consider 2(k+1)+1=2k+3 people.

Let A and B be the closest pair (they throw at each other).

Case 1: No one else throws at A or B. The remaining 2k+1 people form an independent group \rightarrow by IH, at least one survivor.

Case 2: At least one other person throws at A or B. Then ≥ 3 pies hit A or B combined. Remaining pies: $\leq 2k+3-3=2k$ for 2k+1 people. By pigeonhole, someone survives.

Example (Checkerboard tiling with L-triominoes)

Every $2^n \times 2^n$ checkerboard with one square removed can be tiled by L-triominoes.

Solution:

Base case (n = 1): 2×2 board with one square removed = L-triomino.

Inductive step: Assume true for $2^k \times 2^k$. For $2^{k+1} \times 2^{k+1}$ board:

- 1. Divide into four $2^k \times 2^k$ quadrants
- 2. The removed square is in one quadrant
- 3. Place one L-triomino at the center, covering one square from each of the other three quadrants
- 4. Now each quadrant is a $2^k \times 2^k$ board with one square removed
- 5. By IH, each can be tiled.

Polynomial Divisibility

Example $(x^n + 1 \text{ divisible by } x + 1)$

For which positive integers n is $x^n + 1$ divisible by x + 1?

Solution:

```
x+1 \mid x^n+1 \text{ iff } x=-1 \text{ is a root of } x^n+1.
```

Evaluate at x = -1: $(-1)^n + 1$

• If n odd: $(-1)^n = -1$, so -1 + 1 = 0 (root)

• If n even: $(-1)^n = 1$, so $1 + 1 = 2 \neq 0$ (not a root)

Divisible for all odd n, not divisible for any even n.

Pigeonhole Principle

Example (Simple graphs with all distinct degrees)

Can a simple graph on $n \ge 2$ vertices have all distinct degrees?

Solution:

Claim: NO (by pigeonhole)

In a simple graph on n vertices:

- Possible degrees: 0, 1, 2, ..., n-1 (that's n values)
- For all degrees distinct, we need exactly $\{0, 1, 2, ..., n-1\}$

But:

- Degree 0 means isolated (no neighbors)
- Degree n-1 means connected to all others
- These can't coexist! (vertex with degree n-1 would connect to the isolated vertex)

Conclusion: No simple graph on $n \ge 2$ vertices has all distinct degrees.

Hall's Theorem / Matching

Example (Bipartite matching condition)

Hall's Marriage Theorem: A bipartite graph with parts X and Y has a matching saturating X iff for every subset $S \subseteq X$:

$$|N(S)| \ge |S| \tag{2}$$

where N(S) = neighbors of S in Y.

Application: 10 computers, 5 printers. Minimum cables so any 5 computers can print to 5 different printers?

Solution:

Need: every subset of 5 computers has 5 distinct printer neighbors.

If a printer connects to < 6 computers, we could choose 5 computers that don't include any connected to that printer, violating Hall's condition.

Each printer must connect to ≥ 6 computers.

Minimum cables: $5 \times 6 = 30$

Propositional Logic (Truth Sayer/Liar Puzzles)

Example (Truth Sayer and Liar Logic)

Peter says: "At least one of us is a liar." What are Peter and Signe?

Solution:

Let P = "Peter is truth sayer", S = "Signe is truth sayer"

Peter's claim: $\neg P \lor \neg S$

Key: If Peter is a truth sayer, his claim must be true. If he's a liar, his claim must be false.

$$P \Leftrightarrow (\neg P \vee \neg S) \tag{3}$$

P	S	$\neg P \lor \neg S$	$P \Leftrightarrow (\neg P \vee \neg S)$
Т	Т	F	F
Т	F	T	Т
F	Т	Т	F
F	F	Т	F

Answer: Peter is a truth sayer, Signe is a liar.

Perfect Numbers

Example (Verify perfect numbers)

Show that 6 and 28 are perfect numbers (equal to sum of proper divisors).

Solution:

For 6: Divisors (excluding 6): 1, 2, 3

$$1 + 2 + 3 = 6 \tag{4}$$

For 28: Divisors (excluding 28): 1, 2, 4, 7, 14

$$1 + 2 + 4 + 7 + 14 = 28 \tag{5}$$

Theorem: $2^{p-1}(2^p-1)$ is perfect when 2^p-1 is prime (Mersenne prime).

Example: p=3, $2^3-1=7$ (prime), so $2^2\cdot 7=28$ is perfect.

Set Operations Proofs

Example (Prove $(A-C) \cap (C-B) = \emptyset$)

Solution:

(A-C) = elements in A but not in C

(C-B) = elements in C but not in B

For $x \in (A - C) \cap (C - B)$:

- $x \in A C$ means $x \in A$ and $x \notin C$
- $x \in C B$ means $x \in C$ and $x \notin B$

Contradiction: $x \notin C$ and $x \in C$ cannot both be true.

Therefore $(A-C)\cap (C-B)=\emptyset$.

Example (Prove $(B-A) \cup (C-A) = (B \cup C) - A$)

Solution:

LHS: $x \in (B-A) \cup (C-A)$

- $x \in B A$ or $x \in C A$
- $(x \in B \land x \notin A)$ or $(x \in C \land x \notin A)$
- $(x \in B \lor x \in C)$ and $x \notin A$

RHS: $x \in (B \cup C) - A$

- $x \in B \cup C$ and $x \notin A$
- $(x \in B \lor x \in C)$ and $x \notin A$

Both sides are equivalent.

Equivalence Relations

Example (Cardinality as equivalence relation)

Let R on sets of real numbers: SRT iff |S| = |T|.

Solution:

Reflexive: |S| = |S| (yes)

Symmetric: $|S| = |T| \Rightarrow |T| = |S|$ (yes)

Transitive: |S| = |T| and $|T| = |U| \Rightarrow |S| = |U|$ (yes)

This is an equivalence relation.

Equivalence classes:

- $[\{0,1,2\}]$ = all sets with exactly 3 elements
- $[\mathbb{Z}]$ = all countably infinite sets (includes \mathbb{N} , \mathbb{Q})

Example (Rational equivalence: (a,b)R(c,d) iff ad = bc)

Solution:

This is an equivalence relation (represents fractions $\frac{a}{b} = \frac{c}{d}$).

Reflexive: $a \cdot b = b \cdot a$ (yes)

Symmetric: $ad = bc \Rightarrow cb = da$ (yes)

Transitive: If ad = bc and cf = de, then:

- Multiply: adf = bcf = bde
- Since d > 0: af = be (yes)

This is an equivalence relation.

Equivalence class of (1,2): all pairs (k,2k) for $k \in \mathbb{Z}^+$

Generalized Pigeonhole

Example (Generalized pigeonhole for n boxes)

If $n_1+n_2+\ldots+n_t-t+1$ objects are placed in t boxes, then some box i contains at least n_i objects.

Solution:

Proof by contradiction:

Assume each box i contains fewer than n_i objects (at most $n_i - 1$).

Total objects
$$\leq (n_1-1)+(n_2-1)+...+(n_t-1)=\sum n_i-t$$

But we have $\sum n_i - t + 1$ objects.

$$\sum n_i - t + 1 \leq \sum n_i - t$$
 implies $1 \leq 0.$ Contradiction!

Polynomial Division (using auto-div)

Example (Polynomial division with auto-div)

Divide $x^4 + 3x^3 + \frac{5}{2}x + 6$ by x + 2:

Calculation Workspace

Quick Reference: Built-in Typst Functions

Function	Example	Result
calc.gcd(a, b)	calc.gcd(48, 18)	6
calc.lcm(a, b)	calc.lcm(12, 18)	36
calc.fact(n)	calc.fact(6)	720
calc.binom(n, k)	calc.binom(10, 3)	120
calc.perm(n, k)	calc.perm(5, 3)	60
calc.rem(a, b)	calc.rem(17, 5)	2
calc.quo(a, b)	calc.quo(17, 5)	3
calc.pow(a, b)	calc.pow(2, 10)	1024

Binomial Coefficients

$$\binom{10}{5} = 252\tag{7}$$

$$\binom{8}{4} = 70 \tag{8}$$

$$\binom{20}{10} = 184756 \tag{9}$$

$$\binom{15}{7} = 6435\tag{10}$$

Factorials

$$5! = 120$$
 (11)

$$7! = 5040 \tag{12}$$

$$10! = 3628800 \tag{13}$$

Derangements

$$D_4 = 9 \tag{14}$$

$$D_5 = 44 \tag{15}$$

$$D_6 = 265$$
 (16)

$$D_7 = 1854 (17)$$

GCD and **LCM**

$$\gcd(48, 18) = 6 \tag{18}$$

$$\gcd(5292, 36) = 36\tag{19}$$

$$\gcd(662, 414) = 2\tag{20}$$

$$lcm(12, 18) = 36 \tag{21}$$

$$lcm(24, 36) = 72 \tag{22}$$

Bézout Coefficients (Extended Euclidean Algorithm)

$$\gcd(48, 18) = 6 = (48)(-1) + (18)(3) \tag{23}$$

$$\gcd(35,15) = 5 = (35)(1) + (15)(-2) \tag{24}$$

$$\gcd(662,414) = 2 = (662)(-5) + (414)(8) \tag{25}$$

Modular Inverses

$$2^{-1} \equiv 5 \pmod{9} \tag{26}$$

$$6^{-1} \bmod 9 \tag{27}$$

does not exist (since $gcd(6,9) = 3 \neq 1$)

$$7^{-1} \equiv 4 \pmod{9} \tag{28}$$

$$3^{-1} \equiv 5 \pmod{7} \tag{29}$$

$$5^{-1} \equiv 5 \pmod{12} \tag{30}$$

Chinese Remainder Theorem

CRT Solution: $x \equiv 59 \pmod{70}$

Verify: $59 \equiv 1 \pmod{2}$, $59 \equiv 4 \pmod{5}$, $59 \equiv 3 \pmod{7}$

CRT Solution: $x \equiv 68 \pmod{105}$

Verify: $68 \equiv 2 \pmod{3}$, $68 \equiv 3 \pmod{5}$, $68 \equiv 5 \pmod{7}$

Graph Theory Quick Calculations

$$Q_4: 16 \text{ vertices}, 32 \text{ edges}$$
 (31)

$$Q_5: 32 \text{ vertices}, 80 \text{ edges}$$
 (32)

$$K_6: 6 \text{ vertices}, 15 \text{ edges}$$
 (33)

$$K_{10}: 10 \text{ vertices}, 45 \text{ edges}$$
 (34)

$$K_{20}: 20 \text{ vertices}, 190 \text{ edges}$$
 (35)

Inclusion-Exclusion (4 sets with equal intersections)

$$|A \cup B \cup C \cup D| = 4(200) - 6(50) + 4(25) - 5 = 595 \tag{36}$$

Primality and Primes

$$17 \text{ is prime}$$
 (37)

91 is not prime
$$(38)$$

97 is prime
$$(39)$$

There are 10 primes below 30: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29

General Linear Congruences

Solve $ax \equiv c \pmod{m}$:

$$3x \equiv 6 \pmod{9} \Rightarrow x \equiv 2 \pmod{3} \tag{40}$$

$$4x \equiv 5 \pmod{9} \Rightarrow x \equiv 8 \pmod{9} \tag{41}$$

$$6x \equiv 15 \pmod{21} \Rightarrow x \equiv 6 \pmod{7} \tag{42}$$

Division with Remainder

$$17 = 5 \cdot 3 + 2 \tag{43}$$

$$100 = 7 \cdot 14 + 2 \tag{44}$$

$$5292 = 36 \cdot 147 + 0 \tag{45}$$

Relation Properties

Relation R_1 on set (1, 2, 3):

Reflexive: YesSymmetric: YesAntisymmetric: NoTransitive: Yes

• Equivalence relation

Relation R_2 on set (1, 2, 3):

Reflexive: Yes
Symmetric: No
Antisymmetric: Yes
Transitive: Yes
Partial order

Function Property Checker

Check if functions are injective/surjective/bijective on finite domains:

Usage	Code
Define function	<pre>#let my_func = (x) => calc.floor(calc.log(x, base: 2))</pre>
Check properties	<pre>#let result = check-function(my_func, (1, 2, 3, 4, 5, 6, 7, 8), // domain codomain: (0, 1, 2, 3) // codomain (optional))</pre>
Display results	<pre>#show-function-check(result, func-name: "f")</pre>

Quick examples:

```
• f(x) = \lfloor \log_2(x) \rfloor: Inj: No, Surj: Yes, Bij: No
```

- $g(x) = x^2$ on $\{0, 1, 2, 3\}$: Inj: Yes, Surj: Yes, Bij: Yes
- h(x) = |x| on $\{-2, ..., 2\}$: Inj: No, Surj: Yes, Bij: No

Note: Only works for finite domains. For infinite domains (\mathbb{Z} , \mathbb{N} , \mathbb{R}), use mathematical proofs.

Your Calculations Here