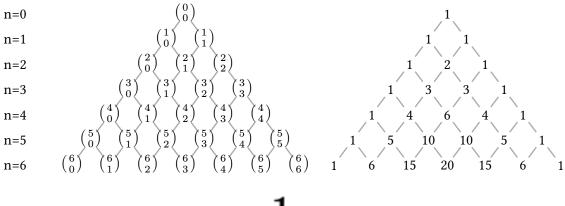
Binomial coefficients, formula and identities

Binomial coefficient

From last week:

C(n,k)= the number of k-combinations from an n-set. Or the number of ways to select k elements from an n-set. Or the number of k-subsets of an n-set. Formula: $\frac{n!}{k!-(n-k)!}=\binom{n}{k}$ for $0\leq k\leq n$

Pascal's triangle



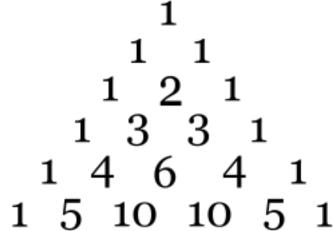


Figure 1: Another form of Pascals triangle. It is mirrored

Binomial identity:

$$\binom{n}{k} = \binom{n}{n-k}$$

You can do analytic proof (mathematic proof using the formulas) or the combinatorial proof (count it in one way to get first result, then in a different way to get the other result).

Combinatorial proof for $\binom{n}{k} = \binom{n}{n-k}$: You could say that for n people, you ask k people to walk out the door, or you could ask n-k people to stay in the room.

In Pascal's triangle, adding the rows:

$$\binom{n}{0}+\binom{n}{1}+\binom{n}{2}+\ldots+(n;n)=\sum_{k=0}^n\binom{n}{k}=2^k$$

Binomial identity For $\binom{n}{k}$ you can also write $\binom{n-1}{k} + \binom{n-1}{k-1}$. It is called Pascal's identity.

$$\begin{pmatrix} 0 \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 2 \\ 2 \end{pmatrix}$$

$$\begin{pmatrix} 2 \\ 1 \end{pmatrix} \begin{pmatrix} 2 \\ 2 \end{pmatrix} \begin{pmatrix} 2 \\ 2 \end{pmatrix}$$
By Pascal's identity: 1 2 1
$$\begin{pmatrix} 3 \\ 0 \end{pmatrix} \begin{pmatrix} 3 \\ 1 \end{pmatrix} \begin{pmatrix} 3 \\ 2 \end{pmatrix} \begin{pmatrix} 3 \\ 3 \end{pmatrix} \begin{pmatrix} 3 \\ 4 \end{pmatrix} \begin{pmatrix} 6 \\ 4 \end{pmatrix} + \begin{pmatrix} 6 \\ 5 \end{pmatrix} = \begin{pmatrix} 7 \\ 5 \end{pmatrix}$$
1 3 3 1
$$\begin{pmatrix} 4 \\ 0 \end{pmatrix} \begin{pmatrix} 4 \\ 1 \end{pmatrix} \begin{pmatrix} 4 \\ 2 \end{pmatrix} \begin{pmatrix} 4 \\ 3 \end{pmatrix} \begin{pmatrix} 4 \\ 4 \end{pmatrix}$$
1 4 6 4 1
$$\begin{pmatrix} 5 \\ 0 \end{pmatrix} \begin{pmatrix} 5 \\ 1 \end{pmatrix} \begin{pmatrix} 5 \\ 2 \end{pmatrix} \begin{pmatrix} 5 \\ 3 \end{pmatrix} \begin{pmatrix} 5 \\ 4 \end{pmatrix} \begin{pmatrix} 5 \\ 5 \end{pmatrix}$$
1 5 10 10 5 1
$$\begin{pmatrix} 6 \\ 0 \end{pmatrix} \begin{pmatrix} 6 \\ 1 \end{pmatrix} \begin{pmatrix} 6 \\ 2 \end{pmatrix} \begin{pmatrix} 6 \\ 3 \end{pmatrix} \begin{pmatrix} 6 \\ 4 \end{pmatrix} \begin{pmatrix} 6 \\ 5 \end{pmatrix} \begin{pmatrix} 6 \\ 6 \end{pmatrix} \begin{pmatrix} 6 \\ 7 \end{pmatrix} \begin{pmatrix} 7 \\ 7 \end{pmatrix} \begin{pmatrix} 7 \\ 1 \end{pmatrix} \begin{pmatrix} 7 \\ 2 \end{pmatrix} \begin{pmatrix} 7 \\ 3 \end{pmatrix} \begin{pmatrix} 7 \\ 4 \end{pmatrix} \begin{pmatrix} 7 \\ 5 \end{pmatrix} \begin{pmatrix} 7 \\ 6 \end{pmatrix} \begin{pmatrix} 7 \\ 7 \end{pmatrix} \begin{pmatrix} 7 \\ 7 \end{pmatrix} \begin{pmatrix} 7 \\ 2 \end{pmatrix} \begin{pmatrix} 7 \\ 3 \end{pmatrix} \begin{pmatrix} 4 \\ 4 \end{pmatrix} \begin{pmatrix} 6 \\ 5 \end{pmatrix} \begin{pmatrix} 8 \\ 6 \end{pmatrix} \begin{pmatrix} 8 \\ 7 \end{pmatrix} \begin{pmatrix} 8 \\ 8 \end{pmatrix} \begin{pmatrix} 8 \\ 3 \end{pmatrix} \begin{pmatrix} 8 \\ 3 \end{pmatrix} \begin{pmatrix} 8 \\ 4 \end{pmatrix} \begin{pmatrix} 8 \\ 5 \end{pmatrix} \begin{pmatrix} 8 \\ 6 \end{pmatrix} \begin{pmatrix} 8 \\ 7 \end{pmatrix} \begin{pmatrix} 8 \\ 8 \end{pmatrix} \begin{pmatrix} 8 \\ 3 \end{pmatrix} \begin{pmatrix} 8 \\ 4 \end{pmatrix} \begin{pmatrix} 8 \\ 5 \end{pmatrix} \begin{pmatrix} 8 \\ 6 \end{pmatrix} \begin{pmatrix} 8 \\ 7 \end{pmatrix} \begin{pmatrix} 8 \\ 8 \end{pmatrix} \begin{pmatrix} 8 \\ 8 \end{pmatrix} \begin{pmatrix} 8 \\ 3 \end{pmatrix} \begin{pmatrix} 8 \\ 4 \end{pmatrix} \begin{pmatrix} 8 \\ 5 \end{pmatrix} \begin{pmatrix} 8 \\ 6 \end{pmatrix} \begin{pmatrix} 8 \\ 7 \end{pmatrix} \begin{pmatrix} 8 \\ 8 \end{pmatrix} \begin{pmatrix} 8 \\ 8 \end{pmatrix} \begin{pmatrix} 8 \\ 3 \end{pmatrix} \begin{pmatrix} 8 \\ 4 \end{pmatrix} \begin{pmatrix} 8 \\ 5 \end{pmatrix} \begin{pmatrix} 8 \\ 6 \end{pmatrix} \begin{pmatrix} 8 \\ 7 \end{pmatrix} \begin{pmatrix} 8 \\ 8 \end{pmatrix} \begin{pmatrix} 8 \\ 8 \end{pmatrix} \begin{pmatrix} 8 \\ 3 \end{pmatrix} \begin{pmatrix} 8 \\ 4 \end{pmatrix} \begin{pmatrix} 8 \\ 5 \end{pmatrix} \begin{pmatrix} 8 \\ 6 \end{pmatrix} \begin{pmatrix} 8 \\ 7 \end{pmatrix} \begin{pmatrix} 8 \\ 8 \end{pmatrix} \begin{pmatrix} 8 \\ 8 \end{pmatrix} \begin{pmatrix} 8 \\ 3 \end{pmatrix} \begin{pmatrix} 8 \\ 4 \end{pmatrix} \begin{pmatrix} 8 \\ 5 \end{pmatrix} \begin{pmatrix} 8 \\ 6 \end{pmatrix} \begin{pmatrix} 8 \\ 7 \end{pmatrix} \begin{pmatrix} 8 \\ 8 \end{pmatrix} \begin{pmatrix} 8 \\ 7 \end{pmatrix} \begin{pmatrix} 8 \\ 8 \end{pmatrix} \begin{pmatrix} 8 \\ 7 \end{pmatrix} \begin{pmatrix} 8 \\ 8 \end{pmatrix} \begin{pmatrix} 8 \\ 7 \end{pmatrix} \begin{pmatrix} 8 \\ 8 \end{pmatrix} \begin{pmatrix} 8 \\ 7 \end{pmatrix} \begin{pmatrix} 8 \\ 8 \end{pmatrix} \begin{pmatrix} 8 \\ 7 \end{pmatrix} \begin{pmatrix} 8 \\ 8 \end{pmatrix} \begin{pmatrix} 8 \\ 7 \end{pmatrix} \begin{pmatrix} 8 \\ 8 \end{pmatrix} \begin{pmatrix} 8 \\ 7 \end{pmatrix} \begin{pmatrix} 8 \\ 8 \end{pmatrix} \begin{pmatrix} 8 \\ 7 \end{pmatrix} \begin{pmatrix} 8 \\ 8 \end{pmatrix} \begin{pmatrix} 8 \\ 7 \end{pmatrix} \begin{pmatrix} 8 \\ 8 \end{pmatrix} \begin{pmatrix} 8 \\ 7 \end{pmatrix} \begin{pmatrix} 8 \\ 8 \end{pmatrix} \begin{pmatrix} 8 \\ 7 \end{pmatrix} \begin{pmatrix} 8 \\ 8 \end{pmatrix} \begin{pmatrix} 8 \\ 7 \end{pmatrix} \begin{pmatrix} 8 \\ 8 \end{pmatrix} \begin{pmatrix} 8 \\ 7 \end{pmatrix} \begin{pmatrix} 8 \\ 8 \end{pmatrix} \begin{pmatrix} 8 \\ 7 \end{pmatrix} \begin{pmatrix} 8 \\ 8 \end{pmatrix} \begin{pmatrix} 8 \\ 7 \end{pmatrix} \begin{pmatrix} 8 \\ 8 \end{pmatrix} \begin{pmatrix} 8 \\ 7 \end{pmatrix} \begin{pmatrix} 8 \\ 8 \end{pmatrix} \begin{pmatrix} 8 \\ 7 \end{pmatrix} \begin{pmatrix} 8 \\ 8 \end{pmatrix} \begin{pmatrix} 8 \\ 7 \end{pmatrix} \begin{pmatrix} 8 \\ 8 \end{pmatrix} \begin{pmatrix} 8 \\ 7 \end{pmatrix} \begin{pmatrix} 8 \\ 8 \end{pmatrix} \begin{pmatrix} 8 \\ 7 \end{pmatrix} \begin{pmatrix} 8 \\ 8 \end{pmatrix} \begin{pmatrix} 8 \\ 7 \end{pmatrix} \begin{pmatrix} 8 \\ 8 \end{pmatrix} \begin{pmatrix} 8 \\ 7 \end{pmatrix} \begin{pmatrix} 8 \\ 8 \end{pmatrix} \begin{pmatrix} 8 \\ 7 \end{pmatrix} \begin{pmatrix} 8 \\ 8 \end{pmatrix} \begin{pmatrix} 8 \\ 7 \end{pmatrix} \begin{pmatrix} 8 \\ 8 \end{pmatrix} \begin{pmatrix} 8 \\ 7 \end{pmatrix} \begin{pmatrix} 8 \\ 8 \end{pmatrix} \begin{pmatrix} 8 \\ 7 \end{pmatrix} \begin{pmatrix} 8 \\ 8 \end{pmatrix} \begin{pmatrix} 8 \\ 7 \end{pmatrix} \begin{pmatrix} 8 \\ 8 \end{pmatrix} \begin{pmatrix} 8 \\ 7 \end{pmatrix} \begin{pmatrix} 8 \\ 8 \end{pmatrix} \begin{pmatrix} 8 \\ 7 \end{pmatrix} \begin{pmatrix} 8 \\ 8 \end{pmatrix} \begin{pmatrix} 8 \\ 7 \end{pmatrix} \begin{pmatrix} 8 \\ 8 \end{pmatrix} \begin{pmatrix} 8 \\ 7 \end{pmatrix} \begin{pmatrix} 8 \\ 8 \end{pmatrix} \begin{pmatrix} 8 \\ 7 \end{pmatrix} \begin{pmatrix} 8 \\ 8 \end{pmatrix} \begin{pmatrix} 8 \\ 7 \end{pmatrix} \begin{pmatrix} 8 \\ 8 \end{pmatrix} \begin{pmatrix} 8 \\ 7 \end{pmatrix} \begin{pmatrix} 8 \\ 8 \end{pmatrix} \begin{pmatrix} 8 \\ 7 \end{pmatrix} \begin{pmatrix} 8 \\ 8 \end{pmatrix} \begin{pmatrix} 8 \\ 8 \end{pmatrix} \begin{pmatrix} 8 \\ 7 \end{pmatrix} \begin{pmatrix} 8 \\ 8 \end{pmatrix} \begin{pmatrix} 8 \\ 7 \end{pmatrix} \begin{pmatrix} 8 \\ 8 \end{pmatrix} \begin{pmatrix} 8 \\$$

Binomial formula

$$(x+y)^1 = x^1 + y^1$$

$$(x+y)^2 = x^2 + 2xy + y^2$$

$$(x+y)^3 = x^3 + 3x^2y + 3xy^3 + y^3$$

$$(x+y)^4 = x^4 + 4x^3y + 6x^2y^2 + 4xy^3 + y^4$$

Note for each $x^a y^b$, you have $(x + y)^{a+b}$

You also have that the coefficients (for $(x + y)^4$ you have 1,4,6,4,1) they follow Pascal's triangle

The formula

$$\begin{split} (x+y)^n &= \binom{n}{0}x^n + \binom{n}{1}x^{n-1}y + \binom{n}{2}x^{n-2}y^2 + \ldots + \binom{n}{n-1}xy^{n-1} + \binom{n}{n}y^n \\ &= \sum_{k=0}^n \binom{n}{k}x^{n-k}y^k \\ (x+y)^n &= \sum_{k=0}^n \binom{n}{k}x^ky^{n-k} \end{split}$$

Proof by induction with respect to n

Basis step: Put n = 1 and prove that the formular is true:

$$(x+y)^{1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \cdot x^{0} \cdot y^{1} + \begin{pmatrix} 1 \\ 1 \end{pmatrix} \cdot x^{1} \cdot y^{0}$$
$$= y + x$$

Induction step: Assume true for n-1, then prove that it's then true for n:

$$(x+y)^{n-1} = \sum_{k=0}^{n-1} \binom{n-1}{k} x^k y^{n-1-k}$$

$$\begin{split} &(x+y)^n = (x+y) \cdot (x+y)^{n-1} \\ &= (x+y) \cdot \sum_{k=0}^{n-1} \binom{n-1}{k} x^k y^{n-1-k} \\ &= \sum_{k=0}^{n-1} \binom{n-1}{k} x^{k+1} y^{n-1-k} + \sum_{k=0}^{n-1} \binom{n-1}{k} x^k y^{n-k} \\ &= x^n + \sum_{k=0}^{n-2} \binom{n-1}{k} x^{k+1} y^{n-1-k} + \sum_{k=1}^{n-1} \binom{n-1}{k} x^k y^{n-k} + y^n \\ &\text{Replace k+1 with k} \\ &= x^n + \sum_{k=1}^{n-1} \binom{n-1}{k-1} x^k y^{n-k} + \sum_{k=1}^{n-1} \binom{n-1}{k} x^k y^{n-k} + y^n \\ &\text{Note from pascals identity: } \binom{n-1}{k-1} + \binom{n-1}{k} = \binom{n}{k} \end{split}$$

Combinatorial Proof:

Consider expanding $(x+y)^n = (x+y)(x+y)\cdots(x+y)$ (n factors).

To get a term $x^{n-k}y^k$, we must:

- Choose k of the n factors to contribute a y (the rest contribute x)
- There are $\binom{n}{k}$ ways to do this

Therefore, the coefficient of $x^{n-k}y^k$ is $\binom{n}{k}$.

Van der Mande
$$\binom{m+n}{r} = \sum_{k=0}^{r} \binom{m}{r-k} \binom{n}{k}$$