upload diverse filer
This commit is contained in:
2994
Diskret Mat/Binomial formula/Binomial Formula.pdf
Normal file
2994
Diskret Mat/Binomial formula/Binomial Formula.pdf
Normal file
File diff suppressed because it is too large
Load Diff
@@ -5,7 +5,7 @@ Section 6.4
|
||||
= Binomial coefficient
|
||||
From last week:
|
||||
|
||||
$C(n, k) = $ the number of k-combinations from an n-set. Or the number of ways to select k elements from an n-set. Or the number of k-subsets of an n-set. Formula: $n!/(k!-(n-k)!)=mat(n;k)$ for $0<=k<=n$
|
||||
$C(n, k) = $ the number of k-combinations from an n-set. Or the number of ways to select k elements from an n-set. Or the number of k-subsets of an n-set. Formula: $n!/(k!(n-k)!)=mat(n;k)$ for $0<=k<=n$
|
||||
|
||||
|
||||
== Pascal's triangle
|
||||
@@ -175,4 +175,4 @@ $ (x+y)¹&=mat(1;0)dot x⁰ dot y¹ + mat(1;1)dot x¹ dot y⁰\
|
||||
Therefore, the coefficient of $x^(n-k)y^k$ is $binom(n,k)$.
|
||||
|
||||
= Van der Mande
|
||||
$mat(m+n;r)=sum^r_(k=0)mat(m;r-k) mat(n;k)$
|
||||
$mat(m+n;r)=sum^r_(k=0)mat(m;r-k) mat(n;k)$
|
||||
|
||||
2989
Diskret Mat/Binomial formula/old.pdf
Normal file
2989
Diskret Mat/Binomial formula/old.pdf
Normal file
File diff suppressed because it is too large
Load Diff
Reference in New Issue
Block a user